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Abstraet--A multiphase particle-in-cell (MP-PIC) method has been developed. This numerical technique 
draws upon the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. 
The MP-PIC method uses an accurate mapping from Lagrangian particles to and from a computational 
grid. While on the grid, continuum derivative terms that treat the particle phase as a fluid are readily 
evaluated and then mapped back to individual particles. The result of this procedure is a computational 
technique for multiphase flows that can handle particulate loading ranging from dense to dilute, a 
distribution of particle sizes and a range of particle materials. The dense particulate model represents 
separated flows of particles and includes drag exerted by a gas phase, inter-particle stresses, particle viscous 
stresses and gas pressure gradients. Six problems are presented to demonstrate the MP-PIC method. This 
MP-PIC method has important applications in fluidized beds (combustion, catalytic cracking), sedimen- 
tation, separation and many other granular flows. 

Key Words: MP-PIC, sedimentation, separation, fluidized beds, CFD, one-dimensional, comprehensive 
multiphase flow 

1. I N T R O D U C T I O N  

The modeling of  dense particulate flows in fluidized beds and elsewhere has recently received 
considerable attention because of  questions of  stability and formulation of  well-posed governing 
equations (Batchelor 1988; Harris & Crighton 1994). Such particulate flows are generally 
represented with a separated-flow model where the different phases have separate, but not 
necessarily the same, velocities. Each phase exerts an influence on the other phases and itself 
through terms such as drag, mean gas pressure gradient, inter-particle stresses and particle viscous 
stresses (Batchelor 1988). These latter two terms make the model equations well-posed (Lyczkowski 
1978; Gidaspow 1986; Harris & Crighton 1994) and are summarily included in this work. 

Mathematical  models of  separated particulate multiphase flow have either used Eulerian 
continuum governing equations for all phases (Gidaspow 1986; Batchelor 1988) or a Lagrangian 
description for the particulate phase, and an Eulerian continuum description for the gas phase 
(Williams 1985). Kuo 0986)  and Gidaspow (1994) give a thorough discussion of  two-phase flow 
models. Cont inuum models are more common for dense particulate flows and intuitively make 
sense, for common experience suggests that fluidized, dense-packed granules flow like a fluid. These 
continuum models readily allow the modeling of  particle-particle stresses and particle-viscous 
stresses using spatial gradients of  phase volume fractions and velocities (Batchelor 1988; Gidaspow 
et  al. 1994). However, the introduction of  a particle size distribution greatly complicates the 
formulation and requires the introduction of  equations to follow the movement  of  different particle 
sizes (Risk 1993). Thus, many  separate continuity and momentum equations are required (Risk 
1993; Gidaspow et  al. 1994) to accurately represent separated flows with different particle sizes. 

An alternative formulation is to use a Lagrangian description for the particle phase and an 
Eulerian one for the underlying continuous gas phase. Trajectory and momentum equations for 
individual particles are implicitly fully coupled with the gas phase. In such a Lagrangian model, 
each particle can have different characteristics (size, density, shape, velocity), and the result is an 
truly multiphase model. I f  the particles have a distribution of  velocities v and masses m, the 
Lagrangian method seeks to solve an equation for the solid phase distribution funct ionf(x ,  v, m, t) 
and has at its root a stochastic formulation closely related to the recent development of  a kinetic 
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theory for granular flows (Jenkins & Savage 1983; Lun et al. 1984; Gidaspow 1994). Such a 
formulation for liquid sprays was given by O'Rourke (1981), where the particle equations were 
solved with a stochastic particle method that included the effects of droplet collisions. However, 
the particle collision frequency is high when the particulate volume fractions are above 5% and 
cannot be realistically resolved within a Lagrangian collision calculation. Typical applications of 
the stochastic particle method are dispersed phase flows such as sprays (Andrews 1989, 1991). 

Here we present a numerical simulation procedure for multiphase flows that consistently blends 
discrete Lagrangian and continuum Eulerian methods. For single-phase flows the particle-in-cell 
technique (Harlow 1964) has recently undergone several significant improvements (O'Rourke et al. 

1993) and provides a natural structure for multiphase simulations. The consequence of our efforts 
is a multiphase PIC method, called MP-PIC, which provides an accurate and consistent 
representation of both discrete and continuum multiphase models. This paper describes the 
formulation of the MP-PIC equations and a one-dimensional implementation to demonstrate the 
MP-PIC method. Six non-trivial multiphase test problems are solved with the most complex being 
a sedimentation and separation of a mixture of particles with three different sizes. When possible, 
the computational solutions are compared with analytical ones to establish the accuracy of the 
numerical formulation. 

The paper closes with our conclusions from the work presented and references. 

2. THE EQUATIONS OF MOTION 

We first give the equations solved by the MP-PIC method. The formulation is asymmetric in 
the sense that, while mass and momentum equations are solved for the continuous phase, for the 
particle phase a Liouville equation is solved for the distribution function of particle positions, 
velocities and sizes. The MP-PIC equations contain terms that are either not contained in, or whose 
form is altered from terms contained in, the usual continuum and particle/fluid formulations of 
multiphase flow. To motivate these terms we indicate later in this section how mass and momentum 
equations for the particle phase can be derived by taking moments of the LiouviUe equation. Our 
equations include the essential fetures of all dense particulate flows, including the displacement of 
gas volume by the particle phase and the strong collisional forces amongst the particles. To model 
the average collisional force we have followed common practice (Gidaspow 1986; Harris & 
Crighton 1994) by using an isotropic solids stress that depends on the particle volume fraction. 

To focus on the new numerical methodology, we have simplified the most general multiphase 
problem by making several assumptions. First, we neglect fluctuating forces on the particles caused 
by fluctuating gas velocities and by particle collisions. The former effect has been modeled in 
particle/fluid methods (Andrews & Bracco 1989; O'Rourke 1989) by including in the particle drag 
term a fluctuating gas velocity that is stochastically chosen using the local gas turbulent kinetic 
energy and turbulence dissipation rate. We will use this same approach in future work. Second, 
we are neglecting off-diagonal elements of the solids stress tensor. Third, we neglect the mean force 
on particles of a given size due to collisions with particles of other sizes. This so-called interlocking 
effect, which may be important only at very high particle loadings (Davies 1968), will also be the 
subject of future research. Additional simplifying assumptions we have made are that the 
continuous phase is a gas, the gas is perfect with constant entropy, the gas is inviscid (viscosity 
is significant on the scale of the particles, where it enters the particle drag formula), the particle 
density is constant and the same for each particle, and there is no mass exchange between the 
phases. 

The only test case in this paper which we compare with experimental data is the last, which 
involves the sedimentation of a mixture of three particle sizes, and some may question the neglect 
of fluctuating particle forces in this problem. Such forces broaden and skew the particle velocity 
distribution and therefore enhance the particle kinematic stress that is implicit in our equations. 
(See [12] below.) It is important to include this effect in problems with gradients in the mean particle 
velocity. In the test case, however, there are only regions of nearly constant mean particle velocity 
separated by kinematic shocks (Kynch 1952). The fluctuating forces are expected to result in some 
broadening of the shocks but otherwise not effect the result. 
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The use of an adiabatic gas equation of state may also bother some. We certainly do not defend 
its use in general, but we maintain that it is appropriate for the problems of this paper. The implicit 
numerical formulation we will give later is such that one can efficiently calculate flows with very 
small Mach numbers. When Mach numbers are very small, sound waves are numerically damped; 
and the numerical solutions obtained are those for incompressible flow, in which the equation of 
state is irrelevant. This is the case for the four test cases we present later involving sedimentation, 
in which we are simulating incompressible, isothermal systems. Only one test case involves 
compressibility effects in the gas, and this is the first one, in which we calculate the sound speed 
in a multiphase mixture for purposes of comparing with an analytic solution. 

The mass and momentum equations for the gas phase are (Wallis 1969; Batchelor 1988; 
Gidaspow 1994): 

~(cpc) 
c~t + V,. (epcuc) = 0 [1] 

and 

~(Ep~uc) 
~t 

- -  + Vx ' (epcucuc)  + Vxp = - -F  + epcg, [21 

where E is the gas volume fraction (or void fraction), Pc is the gas density (gas mass per unit volume 
occupied by the gas), uc is the gas velocity, p is the gas pressure, g the acceleration due to gravity 
and F is the rate of momentum exchange per unit volume from the gas to the particle phase. The 
gas pressure and density are related by 

P 
- -  = constant. [3] 
p~ 

We give the detailed expression for F later after introducing the particle distribution function. 
The evolution of the particle phase is governed by a Liouville equation for the particle 

distribution function f ( x ,  v,  m ,  t ) ,  w h e r e  x is the particle position, v is the particle velocity and rn 
is the particle mass: 

OO--~ft + Vx" (fv) + V,-(fA) = 0. [41 

In this equation A = dv/dt is the particle acceleration and is given by 

A = D(uc - v) - Ip, V~p + g - 0@, V~z, [51 

where D is a drag function, we use the expression of O'Rourke (1981): 

3 Pc l u c -  v[ , [6] D 
= C d  Ps r 

where 

2 4 (  265 Re2/3 1.78 ) 2pGluG--vlr { m ~  I/3 
C d = ~ e  e ¢ - '  + - - - -~e  , R e =  /-to , r=\~rrps]4_-S2- , 

#c is the gas viscosity and Ps is the particle density. In the limit of e = 1.0, this drag formulation 
reduces to the Putnam (1961) correlation for solid spheres. The E-dependence of Cd corresponds 
with that found in the experiments of Richardson & Zaki (1954). g is the gravitational acceleration. 

In [5] z is an isotropic solids stress for which we take the expression of Harris and Crighton 
(1994): 

0 
= Ps 0cp -- 0' [7] 



382 M.J. ANDREWS and P. J. O'ROURKE 

where Ps is a constant with units of pressure, 0 is the particle-phase volume fraction, and Ocp is the 
particle-phase volume fraction at close packing. As a first approximation, we assumed in [5] that 
the acceleration of  an individual particle due to the solids stress is independent of size and velocity. 
When detailed theories have been developed that give the average collisional force on a particle 
as a function of size and velocity, this information can be incorporated into the MP-PIC 
formulation, providing a more detailed and fundamental approach to computing the solids stress. 

The particle volume fraction 0 is related to the distribution function f by 

Then E and 0 are related by 

O= f ffrndm dv. [8] 
, d  ,d  Ps  

E + 0 = 1.0. [9] 

To complete the equations we need an expression for the interphase momentum transfer function 
F: 

F=fflm[n(,,o-v)-±V ]dmdv.,  El01 

Note that when the second term in this integral is combined with the pressure gradient term in 
[2], and use is made of [8] and [9], a more familiar form of  the gas momentum equation is obtained, 
in which e multiplies the pressure gradient. 

We now point out two ways in which the MP-PIC equations differ from usual multiphase flow 
formulations. First, the interphase momentum transfer function is more detailed than in continuum 
equation formulations. Typically, the latter take the momentum transfer rate to be proportional 
to the difference between the mass-averaged velocities of the phases (Risk 1993; Gidaspow 1986, 
1994). Like particle/fluid models, the MP-PIC method solves for the distribution func t ion f  so we 
can compute the detailed F by summing contributions from particles of different velocities and 
sizes. 

Second, the MP-PIC equations include the solids stress term in [5]. Many continuum phase 
formulations contain this term but particle/fluid models (Dukowicz 1980; O'Rourke 1981) ignore 
it because of limitations of the numerical methodology. Particle/fluid models do not include solids 
stress terms because they would have to implicitly couple the calculation of z(O) on a grid with 
the motion of  each individual particle, which would be very time-consuming computationally. The 
MP-PIC method overcomes this difficulty by solving continuum particle mass and momentum 
equations on the grid. Solution of these grid equations closely approximates what the solution 
would be if the individual particle equations of  motion were implicitly coupled. 

The mass and momentum equations for the particle phase that are implicitly solved by the 
MP-PIC method can be obtained by taking moments of [4]. By multiplying this equation 
successively by m and rnv and integrating over the mass and velocity coordinates (Travis et al. 
1976), we obtain: 

and 

a(op~,u,) 
Ot 

Ot + Vx.(Op~u~)=O [11] 

- -  + V.. (Op, usus) + Vx~ + OV,,p 

=Op,g + f ffmD(uo-v)dm dv- V,,.[f ffm(v-uD(V-Us)dm dv 1, [12] 

where the mean particle velocity u~ is given by 

us= ,~l r tfrnv dm dv, 
uP~ J J  

[13] 
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and we have used [5] and [8]. This derivation yields the form of the interphase momentum transfer 
rate and demonstrates that the solids stress term in the momentum equation is the same as that 
of Harris & Crighton (1994). It also shows that the MP-PIC equations account for the kinematic 
stress that arises from local particle velocity fluctuations about the mean velocity, the third term 
on the right of [12]. 

3. N U M E R I C A L  S O L U T I O N  OF T H E  M P - P I C  E Q U A T I O N S  

We have written a computer program that solves the equations of the preceding section in 
one-dimensional Cartesian coordinates. In this section we give the finite difference approximations 
and numerical solution procedure used in this program. The gas-phase equations [1] and [2] are 
solved using an Eulerian grid finite difference scheme whose accuracy is first order in space and 
time. As in particle/fluid methods, the particle-phase equations are solved using computational 
parcels, each of which represents several physical particles of identical size, velocity and position. 
For clarity, we use the term "parcel" to refer to the computational entities to distinguish them from 
the physical particles. The computational parcels follow characteristic paths in the phase space 
whose coordinates are particle positions, velocities and sizes. As indicated above, we do not directly 
solve the particle- and gas-phase equations because this would involve a computationally costly, 
coupled and implicit solution for the motion of each particle. We instead interpolate the parcel 
properties onto the Eulerian grid and solve implicit approximations to particle-phase continuum 
equations that resemble [11] and [12] above. After the grid equations are solved, the local gas 
velocities, gas pressure gradients and solids stress gradients are interpolated back to the parcel 
positions and used in a final explicit update of parcel velocities. The MP-PIC method is a 
particle-in-cell method because it calculates particle interactions on a grid and achieves compu- 
tational economy because there are fewer grid points than there are computational parcels. 
However, unlike most PIC methods, used for single-phase flows, the MP-PIC method parcels move 
with their own velocity rather than the mean particle velocity interpolated from the grid, so that 
multiphase interpenetration is allowed. 

Finite difference approximations are defined using a grid of computational cells of uniform size 
Ax. We use a staggered mesh arrangement where gas thermodynamic variables are located at cell 
centers, with values at the center of cell " i "  being denoted by subscript "i ". The gas velocities and 
momentum densities are located at cell faces, with quantities at the right face of cell " i "  being 
identified by subscript "i + ½". A superscript " n "  denotes the computed value of a variable at time 
t = n At, where At is the computational time step. The finite difference approximations to the gas 
continuity and momentum equations become 

n g ~ n + l  [E "~ U ~ n + l  (epc)~ +~ - (Ep~)~ ~EpGu~j~+I/z-- ~ eG ~J~-i/2 + = 0 [14] 
At Ax 

and 

(E "~ U h n + l  n 
t"a GYi+ 1/2 - -  (EpGUG)i+ 1/2 ..1_ 

2 n 

At Ax 

Pi-4-1 - - / ~ i  [(EPG )7 + ( E p G ) n ÷ I  ] g  
--t A--------~ = --Fg+l/2 2 , [15] 

where p~ is a linearly implicit approximation to the advanced-time pressure P7 +~ to be given later 
and F~+ 1/2 is the approximation to the interphase momentum exchange term, also to be given later. 
An explicit, upwind approximation of the gas convective term keeps the system of equations linear: 

(EpGu2) 7 = mi_  1/2 + m,+ i/2 f(uG)~._ 1/2 

2 ((u6)7+ ./9 

if m i -  i/2 + mi+ 1/2 > 0 
[16] 

if rn~_ t/2 + rn~+ 1/2 < 0 
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/ ~  cell face i-~ ceil face i+V2 

l i< >i 
101 " . " ~  s i 

~ x  i j -  

i-1 i i+l 
cell #i 

Figure 1. Linear interpolation function for domain cells. 

where 

2(EpG uG ),% 1/2 n 
mi+ t/2 = (£pGUG)i+ 1/2 and (uG)7+ 1/2 = (cPa)7 + (~Pa)7+ l 

We use two types of functions to interpolate between the computational parcels and the Eulerian 
grid. For  cell-centered variables we use the linear functions Si in figure I, which are equal to 1.0 
at the centers of cells " i "  and vary linearly to zero at the centers of the neighboring cells. For  
quantities located at cell faces, nearest-neighbor interpolation functions T~+ i/2 are used, where 

10 if x i < ~ x < x i + l  [17] 
T~ +1"2 = if x < xi  o r  x >j xi  + 1 

and xi is the center of cell "i ". It may readily be verified that 

c3S~ 1 
•x = A~ (T,_ ,,'2 - T,+ ,,'2), [18] 

a fact used later when we derive the discretized particle continuum equations on the grid. The value 
of an interpolation function at a parcel's position can be thought of as the fraction of some parcel 
property that belongs to an Eulerian cell. 

Each computational parcel represents a number Np of  real particles with identical mass mp, 
velocity Vp and position Xp. The Liouville equation [4] is the mathematical expression of 
conservation of particle numbers in volumes moving along dynamic trajectories in particle phase 
space. Thus, the number of particles Np associated with a parcel is constant in time. Because we 
assume no mass exchange between phases, the particle mass mp is also constant. Parcel positions 
and velocities are updated using the following implicit approximations: 

xn+l n i)p+l p = xp + At [19] 

and 

n+l n /)p - -  Vp 

A t  =-g-p-~\ Ax /p-~O~\ Ax p+Dp(aa"-v;+')" [201 

Implicit approximations are used to overcome time step stability restrictions that would cause 
computational inefficiency. Equation [20] introduced various new notations and we now give 
detailed definitions. 

The pressure Pi is the same linearity implicit approximation to the advanced-time gas pressure 
used in the gas-phase momentum equation [15]. This pressure is given by 

{ [ a-O ll 
: , = p 7  1 l -o JJ' [211 
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where the time-n pressure is 

E (Epa) ," -1 '  [221 P,"=Prer (1----7--- • 
- O, )PG,,od 

P,er and PG, r,r are values of  the gas pressure and density at some reference state. The time-n particle 
volume fraction is 

1 ~ Si(x~) mp Np, [23] o7 = 

and (~ is an approximation to the advanced-time particle volume fraction given later. Equation [2 l] 
is derived by noting that the pressure is a function of  our dependent variables epo and 0 and 
linearizing about  the time-n values of  these variables. 

In [20] the subscript p denotes that a quantity is evaluated at a provisional parcel position given 
by 

Xp ~--- X;  "~ Up At  [24] 

and evaluated using the cell-face interpolation functions T~+,/2. For example, 

(ffi+--l----ffi~ = E Ti+l/21"XP) ~X " [25] \ a x  )p , 

Analogously, in [20] f~ is a linearly implicit approximation to the advanced-time solids stress 
defined by 

fi = Ps (O~p~P-o,])i (~ - 07) + 27. [26] 

The volume fraction 0p in [20] is based on the provisional parcel positions: 

where 

Op = E Ti+ 1/2('~p)Oi+ 1/2, [27a] 
i 

1 mp 
Oi+ ,/2 = Ax ~ T~+ ,/Z(~p)Np --~. [27b] 

We now verify that our differencing of the solids stress term in [20] conserves total particle 
momentum. Multiplying [20] by Npmp and summing over all parcels results in 

) vp [281 ENom v; ÷ ' -  " _  . . . .  vNpmo(Y,+_, 
p At "7 psOp \ Ax ~" 

where we omitted all terms on the right-hand side of  the resulting equation except the last. By using 
the definition of  [(~i+, - ~)/Ax]p, interchanging the order of  summations over parcels and cells, 
and noting that 0p = 0~+ ,/2 if and only if Ti+ ,/2(xp)= 1 (see [27a]), we obtain 

v " + ' -  " I~_ Npmp ~ 1 "  ~ 

z . . . . .  Z. - .  , ,  

Using the definition of  0i+ I/2 in [27b], we see the sum in [29] is zero, except for possible boundary 
sources and thus proving conservation. 

The last term in [20] is the drag term based on a linearly implicit approximation to the 
advanced-time gas velocity ua: 

2(Ep 6 u6 )7 ++l~2 
ao,~ = E • l , +  ,/2tXp) ( c ~ +  ," [30] 

i 
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The approximation to the particle drag function, [6], uses the time-n value of  the parcel velocity 
and the following approximations to PG, UG and e at the parcel position: 

(epG)7 [311 

2(ep~uG)7+ t/2 
uG,p = ~ Ti+ 1/2(£p) [32] 

, (Ep~)7 + (Ep~)7+, 

and 

IS 
T~+'/2(2P)(1-07+I) if v~,>0 

ep = [33] 
T~+1/2(20)(1 07) if v~ ~<0. 

Having introduced approximations to the particle acceleration equation, we now give the 
difference approximation to the momentum exchange term: 

Fi+'/2={~Ti+'/2(:~P)[Dv(uG'p-Vp+"-l:fii+-|---fii'~lNm l / A x ' p ~ \  Ax ]p]  P PJ [34] 

By multiplying [20] by Npmp, summing the resulting equation over all pacels, and using [34], it is 
easily verified that momentum is conserved in the calculation of momentum exchange between the 
phases. 

The heart of the MP-PIC method is in the use of the as yet undefined particle volume fraction 
in [21] and [26] to approximate advanced-time pressures and solids stresses. If in place of ~ we 

had used 07 *~, which depends on all the advanced-time parcel positions, we would have had a 
closed system of equations coupling the motion of all the parcels with that of the gas. However, 
this system would be extremely time-consuming to solve because of the large number of unknowns 
that are implicitly coupled. We reduce the number of unknowns by solving for a ~ that closely 
approximates 07 ÷1 . The MP-PIC formulation has continuity and momentum equations for each 
phase, discretized on the grid, which eliminates the unknown parcel velocities vp +1 from these 
equations. Once the grid quantities are solved, the parcel velocities and positions are updated 
explicitly. We now derive the MP-PIC grid equations. 

The derivation has three steps. First, the advanced-time parcel velocities are eliminated from the 
+1 results from a simple rearrangement gas momentum equation. The following equation for vp 

[ vp+At Dp~G,p--g ps~ " AX psOp~ Ax 
v~+ I = P P [35] 

1 + AtDp 

of [20]: 

By using [35] to eliminate Vp +1 from [34], substituting from the resulting equation to eliminate F~+ 1:2 
in [15], and doing some algebraic manipulation, we obtain the following gas-phase momentum 
equation: 

n + l  n 2 n 

- (cp~uG),+l + (l - c,+1/2) ~ x  
(£pGUG)i+ I/2 (£pGUG)i+ I/2 -- (EpGu2)7 P i + l  - -  P i  

At + Ax 

= - A "+ 1 n r', + ~_ - z'i (epG)7 + (epG)7+ t i+I/2(ePGUG)~+I/2+ Bi+t/2--,-,'~+I/2 -Ax 2 g. [36] 

The coefficients A;+1/2, Bi+l/2, C~+1/2 and Di+l/2 a r e  given in appendix A and depend only on 
explicitly known information. It is worth noting that the C coefficient is an approximation to 0 
and so the coefficient of the pressure gradient in [36] is an approximation to the gas volume 
fraction e. 
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The second step in the derivation is to obtain the particle-phase continuity equation. By taking 
the difference between [23] evaluated at time levels n + 1 and n we obtain 

1 
0~' +' - 0~' = Ax p~ [S'(x~'+ l) - S,(x~,)] mpUpp, [37] 

"+~ is given approximately by The value of the interpolation function at Xp 

) os, 
Si(Xp+I) ~ Si('~P) "31- (Xp+I  - P ~ x  ( g p ) '  [38] 

where ffp is defined in [24]. The equation for the approximate volume fraction if, is obtained by 
substituting the right-hand side of [38] for S~(xp +~) in [37] and using [18]: 

07 I (0  6Us)i+,/2 - -  (0  6Us) i_1/2 : 0, [39] 
At + Y explicit A x  

where 

and 

(~ (0Us)explicit0X = A~IFSi(xp)~Si(xp)]m~ N p ~ p  L At [40] 

1 
Z ~  Ti+ l/2()~p)(Dg + 1 Vp). [411 (06Us)i+'/2=-~x p m 

Equation [39] for the particle phase volume fraction has one term that depends on the 
advanced-time particle velocities. Step three of the derivation consists of using [35] to eliminate V p +) 
from [41] to obtain an equation for (0 6us)i+ 1/2 that depends only on grid quantities: 

(O ~u,),+ l/2 J(l~ ~ U "~n+l ffi+l--ffi Ei+l/2"~i+l--'~i Fi+m, [42] Ps At = Ai+l/z~ eG GJi+l/Z-- Ci+l/2 A ~  Ax 

where the coefficients E~+ 1/2 and F/+ 1/2 are given in appendix A and depend only on explicitly known 
information. 

Equations [14], [36], [39] and [42] are the MP-PIC continuity and momentum equations for the 
gas- and particle-phases. These comprise a system of four linear equations for the unknowns 0, 
0 6u,, EpG and EpG UG. Coefficients A, B, C, D, E and F are explicitly calculated. When [36] and [42] 
are used to eliminate 0 6u~ and Ep~u~ from [14] and [39], two equations are obtained per cell relating 
the unknown 0 and Epo to their neighbors and themselves. These two coupled equations are solved 
by holding the current approximation for each variable fixed and solving the equation for the other 
variable by a tridiagonal matrix solver, and repeating this procedure while alternating the fixed and 
solution variables until convergence is obtained. After convergence, 0 6u, and EpauG are calculated 
from [36] and [42]. Finally, [19] and [20] are used to calculate the final particle velocities and 
positions. 

Note that the only approximation used in obtaining the particle-phase grid equations from the 
particle equations is the use of [38]. The difference between the left- and right-hand sides of [38] 
is of order At 4, and thus 0, is expected to be a very good approximation to 07 +~. Significant 
differences between these two quantities might be expected to introduce numerically-generated 
wave motions or convergence difficulties, but we experienced no such difficulties obtaining the 
example solutions in the next section. 

4. TEST PROBLEMS 

Six test problems for the MP-PIC method are described and solved. These test problems have 
been chosen either because they demonstrate the accuracy of the method or because they have 
analytical solutions for comparison purposes. The first test problem computes the speed of a sound 
wave in a multiphase mixture. The second computes the speed of a stress wave driven by the solids 
stress term. The third problem computes the sedimentation of a dispersed (low volume fraction) 



388 M.J .  ANDREWS and P. J. O'ROURKE 

Table 1. Physical parameters for all test 
problems 

Gas density (kg/m ~) 1.0 
Gas viscosity (kg/ms) 2.0 x 10 2 
Solid density (kg/m 3) l03 
Gravity (g) (m/s 2) 9 
Particle mass (kg) 4. 188 )< 10  - 6  

Particle radius (m) 10  - 3  

o/ 1.4 

slug of particles. The dispersed slug shows some interesting accuracy results about  the MP-PIC 
method and serves to introduce more general analytical solutions for sedimentation problems. The 
fourth, fifth and sixth problems simulate sedimentation of dense particulate slugs having one, two 
and three particle sizes, respectively. 

The first five test problems use the same gas properties and particle size given in table 1, chosen 
for convenient non-dimensionalization and a low particle Reynolds number of  10 -2. This low Re 
is not an inherent limitation of the method but simplifies the drag coefficient because the Re 2/3 terms 
may be neglected. The last test problem compares with experiments measuring sedimentation of 
mixtures of  three particle sizes. In this problem it is important  to retain the Re 2/3 term in the drag 
coefficient. 

5. SPEED OF S O U N D  

The speed of sound in a multiphase mixture with velocity equilibrium between phases is given 
by the following (Wallis 1969; Gidaspow 1986): 

--5- ----- P m  ~ + , w i t h  Pm = •Pc, + Ops. 
Cm \pGc~ 

_2 ̂  >> _2 _ and Cpm ~--EOps, giving: We have csps cGt, a 

Cm = cG with c~ = - -  [43] 
Pa 

TO compute Cm we impose a sinusoidal half-wavelength gas and particle velocity perturbation as 
shown in figure 2. 

The solids volume fraction is set at 0.2 and to ensure the particles follow the gas velocity the 
drag coefficient is set to a large value of 102°. The solids stress term is neglected by setting Ps = 0. 
Table 2 gives additional computat ional  details. 

F rom the problem specifications the gas sound speed is ca = 374.2 (m/s) and the mixture speed 
is Cm = 29.56 (m/s). 

The mixture speed corresponds to a pressure wave oscillation time z = 2/Cm = 6.766 X 10 - I  (S), 
and with a time step of 3 x 10 -3 (s) and cell size of  1/40 (m), the corresponding numerical Courant  
number  is 3.55. To observe the pressure oscillation that accompanies the speed of sound, we plot 

uo,u s e---0.8, 0--0.2 

p~=l. Ps=103 

0.02 .... 

0 
0 x 

), 
a _ - |  
2 

Figure 2. Initial conditions for the speed of sound in a mixture. 
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Table 2. Computational details for the sound wave test problem 

Length of domain (m) 
Gas perturbation velocity (m/s) 
Number of particles per parcel 
Number of computational cells 
Time step (s) 
Number of parcels 
Reference pressure p~f (N/m 2) 

1 
0.02 

95,500 
40 or 80 

1.5 x 10 -3 or 3 x 10 -3 
500 
105 

the pressure at the center cell x = 2/4 in figure 3. Inspection of the figure reveals a computed 
oscillation period of  6.77 x 10 -2 (s), which is in excellent agreement with the analytical result. The 
pressure wave in figure 3 is numerically damped due to the implicit nature of  our numerical method 
and the large Courant numbers used in this calculation. A numerical stability analysis by O'Rourke 
(1985) yielded the following amplification reduction factor, A, per time step of 

1 2n A= / (~b)' w i t h • = - f . A x  

1 + 4c 2 sin: 

Cm At 
and c = -  [44] 

Ax 

Inserting values for the case with NX = 40 (Ax = 1/NX) and At = 3 x 10 -3 (s), gives a reduction 
of 0.9633 per time step. Since one pressure oscillation corresponds to approximately 22.5 time steps, 
the expected amplitude reduced between oscillations is (0.9633) 225, a factor of  0.4314. Measuring 
the reduction from figure 3 gives a value of 0.4135, which is in excellent agreement with the 
numerical stability result. 

6. S P E E D  O F  A S T R E S S  W A V E  

Gidaspow (1986) gave an analytical solution for the propagation speed of  a small density 
fluctuation for a dense particulate flow in a vacuum. The wave is propagated by the particle stress 
term that may be written as 

c]'c..._~s = G(Oo) (]0 G(Oo) = PsOcp [45] 
~x t~x' (0cp - 00)2 

UMF 22/2--L 

Gas sound speed = 374.2 (m/s) 
Analytical sound speed = 29.58 (m/s) 
Computed sound speed = 29.51 (m/s) 

2.00 

1.50 - 

1.00 

0.50 

0.00 

-1.00 

-1.50 

-2.00 

I I I I J 

"1 I I I [ 

0.0~ 0.I~ 

I I I .  [ I I .I I 
~ :  NX--40, dt=l'.5e-3 (s) 

~ :  Nx--4o, d~-~.oe.3 (s) 

I ) I I 

0.200 
t (s) 

I I 

0.300 

Figure 3. Pressure at the center point for the speed of sound test problem. 
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Table 3. Stress wave test problem 
Initially ua = up = 0, 00 = 0.2 
Reference pressure (Pref) 106 
Cd=0, Ps = 5.0 
Time step (s) 2 × 10 -3, 10 -2, 2 × 10 -2 
Number of parcels 200 
Particles/parcel 238,750 and 243,525 
Number of computational cells 40 and 80 
Length of domain (In) 1 

where 00 is the reference solid volume fraction. We reproduced the necessary conditions to 
propagate such a stress wave by setting the drag coefficient to zero and, thus, decoupling the 
particles from the gas. Gas velocities are small and so the pressure gradient is negligible. The 
particle phase equations may be readily reduced to the form (Gidaspow 1986): 

020 G(Oo) 020 G(]-G(~A) 
O t ~ -  Ps 0x2' co= ~ ~-f" [46] 

with the stress wave speed co. Table 3 gives the test problem specification. Figure 4 shows that a 
reference solids volume fraction of 0.2 is used and a small volume fraction step of  2% of  00 is 
specified at the center of the domain. 

Inserting the problem specification values in [46] gives a stress wave speed cc = 0.1183 (m/s). 
Figure 5 shows the results from the calculation with the continuity differential 0 - 00 plotted against 
x. As might be expected, the figure shows two oppositely moving waves with a region of  high wave 
number  harmonics between. The envelope described by the expanding waves grows linearly with 
time. Figure 6 plots the separation distance measured from - 0 ' / 4  to 0 '/4 against time and the 
analytical solution. The rate of  increase in separation gives the computed wave speed as 0.1176 
(m/s), which is in excellent agreement with the analytical result of  0.1183 (m/s). 

7. F A L L  OF A D I S P E R S E D  S L U G  OF P A R T I C L E S  

This test problem considers the fall of  a particle slug where the particles are dispersed to give 
a low solids volume fraction (00 = 5.22 x 10-4).  Table 4 gives details of  the initial conditions and 
computat ional  parameters. 

It  is convenient at this point to introduce some analytical results. The low solids volume fraction 
means that the gas volume fraction c is close to 1, and so the solid stresses and the volume fraction 
dependence of the drag coefficient can be neglected. We first seek a solution where there are no 
spatial gradients, other than pressure gradients developed in the slug and, consequently, where all 
particles fall with a velocity Us that depends on time alone. With these assumptions the gas and 
particle momentum equations can be written: 

aug ~ ~p 
E ~-~- q . . . . .  eg -- Dso Ps (uo - us) 

PG Ox Pc 

o OUs o 
3t 4 . . . . .  Og + DsO(u~ - us) [47] 

Ps Ox 

with a Stokes time scale 1/Ds = 2psr2/9#~. 

0.2 0.204 

! 

0 x 1 

Figure 4. Initial conditions for the speed of a stress wave. 
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Figure 5. Computed solid volume fraction profiles for a stress wave. 

t = 3 s  

t = 2 S  

t - - I s  

t = O s  

Since the flow is incompressible, PG is a constant. Adding the gas and solids continuity equations 
[1] and [11], and using the boundary conditions that velocities are zero at the top and bottom walls 
gives: 

Ous + Euo = O. [48] 

Using [48] and eliminating the pressure gradient between the equations in [47] gives the following 
formulas for particle and gas velocities starting from initially stationary positions: 

E2g )F ( )1 0, ( P o -  P+__ 1 -  exp t and uo = - - -  [49] 
u, = ~ k---~ } L E (Opo + Eps) ' E 

This expression reduces to a single particle result for E = 1 and 0 = 0. For the present problem, 
the Stokes time scale lIDs is 1/90 (s) and the particle has a free fall velocity of v~ = -0 .1  (m/s). 
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. J  Computed wave speed: 0.1176 m/s 
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0.00 1.00 2.00 3.00 
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Figure 6. The computed spread of a stress wave. 

Thus, the separation velocity of the slug and gas rapidly reaches a constant value and the slug fall 
obeys a drift flux model so that: 

Au = u~ - us = constant > 0. [50] 

More generally, we now show the sedimenting slug can develop spatial inhomogeneities. The drift 
flux approximation [50] is still good since relaxation times to the constant separation velocity are 
small compared with sedimentation times. Using [48] and [50] we find uG--- 0 Au and u~ = -E  Au, 
and the solids continuity equation may be written as: 

60 ~30 
~t + au(2O - 1)  ~ x  = 0 .  [ 51 ]  

This may be solved by the method of characteristics to give the results in figure 7: 

0 =  1 + ~  forAu(20 ~ - l ) t ~ < x ~ < A u ( 2 0 + ~ - l ) t  

=0  ~ forx~<Au(20 ~ - l ) t  

=0+~ for x >~ Au(20+~ - 1)t. [52] 

In the present dispersed slug problem 0_~ = 0 and 0+~ = 00 = 5.22 x 10 -4 so from [52] the initial 
step gradient on the lower side of the slug remains steep throughout the calculation. 

The step function profile of the upper part of the slug remains unchanged. This is because the 
characteristic velocity Au(20 - 1) of [51] is an increasing function of 0. Thus, characteristics 
emanating from the low 0 region above the slug cross characteristics emanating from within the 
slug and form a kinematic "shock" moving with velocity Au = v~. Kynch (1952) previously 
obtained this result. Physically what happens is that if a particle falls behind the slug it finds itself 
in a region of lower 0, where the gas velocity is smaller, and the particle catches up with the slug. 

Table 4. Computational details for the fall of a dispersed slug of particles 

Initially 
Time step (s) 
Number of parcels 
Number of computational cells 
Length of domain (m) 
Number of particles per parcel 
Initial position of parcels 

u c = u p = 0 , 0 0 = 5 . 2 2 x  10 -4 
10-~ 
250 
25 
1 

100 
Uniform spacing between 0.6 and 0.8 m (cells 16-20) 
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1 1 Characteristic solution ~ e+oo 

X 

Figure 7. Analytical solution for sedimentation. 

The above analysis revealed that we expect the dispersed slug to fall at the terminal velocity v~ 
and preserve its initial step shape throughout the motion. Such a problem is a useful test of 
numerical diffusion. Furthermore, our analysis also revealed that with a drift flux approximation 
a linear mixing region should form below the slug that penetrates the gas with the terminal velocity 
v~ and with a dense slug velocity of vslug = - c  Au. This characteristics analysis provides an 
analytical solids volume fraction profile [52], for low solid volume fraction. 
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Figure 8. Computed solid volume fraction of  a falling disperse slug of  particles. 
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Figure 9. Solids volume fraction for the sedimentation of a granular mixture. 

Figure 8 shows the computed time development of the dispersed slug problem with the solids 
volume fraction normalized by 00. The figure shows that the edges of  the volume fraction are 
rounded because of the linear interpolation S function, shown in figure 1. The slug falls at a 
computed constant velocity of  0.0991 (m/s), which is in excellent agreement with the expected value 
of 0.1 (m/s). 

Since the computational cell size is 0.04 (m) and the slug velocity is close to 0.1 (m/s), the slug 
traverses five computational cells in a time of  2 (s). Therefore, the solids volume fraction plots in 
figure 8 should be the same at 0, 2 and 4 (s), and at 1 and 3 (s). Inspection of the figure reveals 
that the slug profile at 2 and 4 (s) and 1 and 3 (s) are practically identical. A small difference can 
be seen between 0 and 2 (s). This may be attributed to the finite rise time of the slug velocity to 
its free-fall value. This accurate retention of the solids volume fraction profile as it moves across 
the grid shows that the MP-PIC calculation has low numerical diffusion because of its particle 
nature. 

8. S E D I M E N T A T I O N  OF A G R A N U L A R  M I X T U R E  

This test problem considers the sedimentation of a densely packed granular mixture comprised 
of particles of  a single size. Figure 9 shows that the initial solids volume fraction distribution fills 
the top half of  the computational domain with a solids volume fraction of  0.2. Table 5 gives other 
details of  the problem. Since the particle and gas properties are the same as the previous problem, 
the maximum velocity of a particle is the free-fall value of -0 .1  (m/s). This test problem offers 
significant difficulties because of the volume fraction dependence in the drag function. Using the 
drift flux approximation, we obtain the following expression for the mixture separation velocity, 
Aura, when pressure is eliminated from the momentum equations: 

Aura = e" A u  = e"g /Ds ,  with n = 3.65 and ps>>p~. [53] 

Table 5. Computational details for the sedimentation of a granular mixture 
Number of particles per parcel 
Number of parcels 
Number of computational cells 
Time step (s) 
Length of computational domain (m) 
Initial position of parcels 

119,370 
200 
40 

2 x 10 -3 
1 

Uniform spacing between 0.5 and 1 m 
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Figure 10. Computed solids volume fraction at early and late times for granular sedimentation. 

The  solids stress has  been neglected as pa r t  o f  the dr i f t  flux app rox ima t ion .  In  the l imit  o f  a single 
par t ic le ,  E - 1 and  Aum ~ Au = 0.1 (m/s).  However ,  for  the present  p rob lem,  the c dependence  gives 
Aum = 0.0443 (m/s).  

The  solids vo lume f rac t ion  equa t ion  is now modif ied  to: 

d0 d0 
+Aum((2+n)O 1 ) 7 - = 0 .  [54] 

dt o x  

The so lu t ion  to [54] at  the low end o f  the slug is 

°= L oo:: 
v(O_o~)t <~ x <~ v(O +~)t 

x <<. v ( O ~ ) t  

x >i v(O+~)t, 

e 

0.4 

0 

Gm~W 

r = 0.001 mm 

r = 0.002 mm 
l 

0 x 1 

Figure I 1. Initial conditions for the binary separation test problem. 
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Table 6. Computational details for the separation of a binary mixture 

Small particle radius (mm) 1 
Number of small particles per parcel 47,760 
Number of parcels with small particles 250 
Large particle radius (mm) 2 
Number of small particles per parcel 5970 
Number of parcels with large particles 250 
Number of computational cells 50 
Time step (s) 5 x 10 -4 
Length of computational domain (m) 1 
Initial position of parcels Uniform spacing between 0.5 and 1 m 

where v(O) is the characteristics velocity Aum[(2 + n ) O -  1] and v -1 is the inverse function (i.e. 
v - I (v  (0)) = 0). The upper  par t  o f  the slug will again remain a step function because o f  the crossing 
o f  characteristics. 
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F i g u r e  12. Par t i c le  v o l u m e  f r ac t ions  for  the s e p a r a t i o n  o f  a b i n a r y  mixture .  
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Equation [54] reveals that we should expect point (C), where 0 = 0 in figure 9, to fall with a 
velocity of  - A u .  However, at point (B) (00 = 0.2) the characteristics velocity is 0.13 Aum, so the 
mixture edge at (B) should rise at a velocity of  5.76 x 10 -3 (s). The top edge of the mixture slug 
should fall at the solids velocity -E0 Aura. 

So points (A) and (B) on figure 9 approach one another as the slug falls. The dependence of 
Aura between (B) and (C) on E means the linear solution of the last problem does not apply. 
However,  for small values of  0 near (C) Au m -~ Au~, and we should expect a linear profile. Since 
the profile rises at (B) but falls in the region of  (C) we might expect to see a rounding of the corner 
at (B). The solids should compact  once (C) reaches the bot tom of the container. The highly 
non-linear nature of  AUm prevents an analytical estimate of  the increase in the depth of  the compact  
region. 

Figure 10 shows the computed solids volume fraction at 2 and 5 (s). Also marked on the plot 
are the analytical results for points (A), (B), and (C) at the two times indicated with subscripts 2 
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and 5. Excellent agreement is seen between computed and analytical results. The curvature at point 
(B) is clearly shown, as is the linear lower profile for values of 0 up to 0.15. 

Figure 10 also shows the computed solids volume fraction profile at 10, 20 and 30 (s). Most of 
the particles have settled to the bottom by 20 (s) and formed a sediment layer with a relatively sharp 
upper surface and with a volume fraction near the close packing limit. However, the figure shows 
that at 30 (s) the sediment bed has continued to compress and forms a very sharp interface. At 
this late time the bed supports its own weight, which would not be possible without the 
intergranular stress terms. 

9. S E P A R A T I O N  OF A BINARY M I X T U R E  

This problem extends the granular sedimentation problem by considering the separation of a 
homogeneous binary mixture particles with diameters 1 and 2 (mm). Figure 11 shows the initial 
volume fraction distribution. Table 6 gives other computational details. 

Figure 12(a)-(f) shows computed volume fraction profiles at times of 0, 2, 5, 10, 20 and 30 (s). 
The initial volume fraction profiles are shown in figure 12(a). Figure 12(b) shows the volume 
fractions at 2 (s). The larger particles fall faster because they have a lower surface to volume ratio 
and hence reduced effect of drag. Consequently, the larger particles collect on the bottom. The small 
particles sediment more slowly, so that some are still left at the top. Figure 12(b) shows an 
interesting effect, where above the large particles at the top of the domain the volume fraction of 
the small particles has increased to a maximum of 0.35, which is well above their initial volume 
fraction of 0.2. This local compaction of small particles above large particles is caused by the faster 
fall of  large particles that causes upward gas motion and also a net solids volume fraction that 
is lower than the initial one. The upward gas motion tends to lift small particles up from below. 
The reduction in solids volume fraction implies an increase in gas volume fraction and hence a 
decrease in Cd given in [6]. Thus, a reduction in Cd for the small particles at the top of the slug 
causes them to accelerate and form a local compaction above the binary mixture. 

Before discussing figure 12(c)-(f), we note that there are characteristic solutions for the profiles 
in figure 12(b) similar to those of granular sedimentation problem. In particular, the lower edge 
of the large particle volume fraction profile in figure 12(b) is in free fall over the first 2 (s) with 
a velocity vp,2 = Auo~,2 = G/Ds,2,  with a large particle Stokes time scale Os, 2 of 4/90, giving a velocity 
of  0.4 (m/s). Consequently by 2 (s) the large particles have reached the bottom where they are 
collecting. The lower edge of the small particle volume fraction falls at Vp,~ = E 3.65 Au~,~. Figure 12(b) 
shows ~ = 0.94 at the lower edge, giving the analytical result (B) shown on the figure. Similarly, 
the top edge of the mixture at C falls with a velocity E 3.65 Au~,2 because the large particles fall faster. 
Both of these analytical results compare well with the computed profiles. The slight discrepancy 
is due to the finite time acceleration of the particle mixture to the drift flux solution. The transient 
development of the large particle volume fraction profile coupled with the non-linear dependence 
of drag on E prevents the formulation of detailed analytical solutions. 

Inspection of the computed volume fraction profiles at 5 (s) in figure 12(c) reveals that the large 
particles have just reached the close packing limit at the bottom of the domain and are beginning 
to compact. The total solids volume fraction is an even mixture of small and large particles, with 
a local compaction of small particles at the top of the mixture that is now wider than at 2 (s). 
Figure 12(d) shows that at 10 (s) the large particles have all fallen to the bottom of the container. 
Furthermore, the volume fraction profile of the small particles shows they are collecting on top 

Table 7. Solid volume percentage for the batch settling problems 
Particle grade Grade 8 Grade 10 Grade 12 

(dme~n = 500 pm" ] (dmea, = 300 Pm ' ] (dmea, = 170 #m'] 
(Davies 1968) \dmi. = 420/~m ] ~ drain= 220um ] \drain = l l0pm] Total 

Case A 10% 9% 6% 25% 
Case B 20% 9% 6% 35% 
Case C 20% 9% 12% 41% 
Case D 20% 17% 12% 49% 
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of the large particles. At 20 (s) the large particle volume fraction profile shows a compacted region 
at the bottom, with a slightly diffuse mixture interface of the two particle sizes. The small particles 
continue to collect on top of the large ones. By 30 (s) the mixture has separated out with large 
particles on the bottom and small particles resting on top. The volume fraction profiles are close 
to the prescribed maximum packing limit of 0.7 and are stationary. 

10. BATCH SETTLING OF A TERTIARY PARTICLE MIXTURE 

In this last problem, taken from Davies (1968), we consider the batch settling of a homogeneous 
mixture of three particle sizes. The suspending fluid is kerosene at 25°C (p = 800 kg/m3, 
p = 1.9 x 10m3 Ns/m*), and the solid phase is glass (p = 2.93 x lo3 kg/m3). Davies reported a 
narrow size distribution around a mean for each of the three different particle sizes. The mean 
particle diameters were 500, 300 and 170 pm. The relatively large particle sizes and low viscosity 
fluid result in maximum particle Reynolds numbers of about 5. 

As a consequence of the Reynolds numbers, the second term in the drag law [6], is expected to 
be significant; and the hindered settling analytical methods of Lockett 8z Al-Habbooby (1973) and 
Mirza & Richardson (1979) are perhaps inaccurate. We note that Davies measured the interface 
velocities of separating particle sizes by observing colors associated with each particle size 
distribution. Hence, the last particle in a particle distribution determines the position of the 
interface, and this last particle corresponds to the smallest particle in the distribution. 

The mean and smallest sizes for each distribution are summarized in table 7, and measurements 
for the four volume fraction cases of Davies (1968) are given in figure 13. The MP-PIC method 
is well-suited to handle the particle size distribution given by Davies, but in our computation we 
have taken a homogeneous mixture of each particle size, using the smallest size for each distribution 
and the associated size volume fraction of table 7. The volume fraction variation due to differential 
particle velocities is expected to be a secondary effect because the particle size distributions are 
relatively narrow and because no individual distribution volume fraction dominates the total. Our 
use of discrete particle sizes means that this problem is also well suited as a test problem for a 
four-fluid algorithm, one fluid for the kerosene, and one each for the three particle sizes, and also 
may be computed with the method of Mirza & Richardson (1979). 

3’oo 1 \ 0 Grade 8 : experiment 

n Grade 10: experiment 

0 Grade 12: experiment 

Grade 8 : computed 

T 2.00 
E Grade 10: computed 
8 
B 

Grade 12: computed 

a B 1.50 

Total % solid volume fraction 

Figure 13. Interface velocities for batch setting. Open symbols are experimental data from Davies (1968), 
solid symbols are computed results and the solid line is from the drift flux theory of Mirza & Richardson 

(1979). 
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Table 8. Computational details for batch settling, for case A 

Small particle radius (/~m) 55 
Number of small particles per parcel 2.8698 x 108 
Number of parcels with small particles 300 
Medium particle radius (#m) 110 
Number of medium particles per parcel 5.3809 x 107 
Number of parcels with medium particles 300 
Large particle radius (pm) 210 
Number of large particles per parcel 8.5928 x 106 
Number of parcels with large particles 300 
Number of computational cells 100 
Time step (s) 0.01 
Length of computational domain (m) I 
Initial position of parcels Uniform spacing between 0 and 1 m 

Calculation details for case A of  table 7 are summarized in table 8, details for cases B, C 
and D of  table 7 are similar with appropriate adjustments to the number of  particles per parcel 
to give the volume fractions of table 7. It is interesting to note that Davies reported significant 
interlocking of  binary particle sizes for solid volume fractions above 40%, but that for tertiary 
mixtures three distinct boundaries were observed and no interlocking was observed up to 50%. This 
interlocking effect is not presently incorporated in our model but will be the object of  future work. 
We also note that Lockett & AI-Habbooby (1973) report a measured hindered settling function, 
f(E) = E n, with a value for n of approximately 5 for the particle sizes of  Davies. This value 
corresponds to a value of - 3  in the drag function of [6] rather than the -2 .6 5  previously used. 
We have modeled these problems with the constitutive equation [3], taking ~ as 1.4 and a reference 
pressure of I atm. This corresponds to a sound speed in kerosene of  10 m/s, well above the particle 
and liquid velocities, giving a reasonable approximation of  an incompressible fluid. 

Figure 13 presents a comparison of the interface velocities measured by Davies and those 
obtained by measuring the volume fraction "shocks" computed from the MP-PIC method. Open 
symbols are experimental data, and closed symbols the corresponding computed values. The figure 
shows good agreement between experimental measurements and computations over the whole 
range of  total solid volume fraction. Also included on the plot, shown as solid lines, are results 
of drift flux calculations using the method of Mirza & Richardson (1979). This calculation 
procedure is well known and tested for homogeneous batch sedimentation of  low Reynolds number 
particles. Figure 13 shows that the drift flux calculation does poorly for the velocity of the lowest 
(fastest moving) interface. This is due to the relatively high particle Reynolds numbers (Rep ~ 5.0). 
The interface velocities between the mid-size (Rep ~ 1.0) and small particle zones, and the small 
particle (Rep ~ 0.2) and clear kerosene, are predicted well by the drift flux solution. This is to be 
expected because the particle Reynolds numbers are small, 

11. C O N C L U S I O N S  

A new method for the simulation of  multiphase particulate flows called MP-PIC has been 
described. The MP-PIC method extends the well-known PIC methods but differs significantly by 
allowing separate gas and particle velocities. The governing equations of multiphase flow are 
derived for use with our MP-PIC method using a Boltzman approach and then closely related to 
a Eulerian continuum description. These closely coupled formulations allowed us to take the best 
of  Eulerian and Lagrangian methods and produce a formulation that can readily handle a 
distribution of particle characteristics. 

Six test problems have been described and then solved with the MP-PIC method. The test 
problems have shown that the method can accurately compute the speed of sound in a particulate 
mixture and the speed of  a stress wave. A calculation for the fall of  a dispersed particle slug revealed 
that the MP-PIC method has negligible numerical diffusion in the calculation of particle advection. 
An analytical solution for the problem was given and accurately computed. A calculation for the 
sedimentation of a granular mixture revealed that the MP-PIC method can simulate the whole 
sedimentation process including lat• time compaction to the close packing limit. The analytical 
solution was extended to this densely packed problem and showed the computed solutions were 
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accurate. A test problem for the separation of a binary mixture demonstrated the power of the 
MP-PIC method to handle different particle characteristics. This problem shows complex inter- 
actions that take place in a relatively simple separation problem, in particular the appearance of 
local compaction interfaces and the separation of small particles on top of large ones. The last 
problem compares our computational simulation with experimental data from Davies (1968) for 
batch settling of a tertiary particle mixture. Our results compared very well with all the experimental 
data. Of note is the agreement at high particle Reynolds numbers (~  5) which was attributed to 
the Re 2/3 dependence in the drag function. These large particle Reynolds numbers, and tertiary 
mixture, make this a practically important problem. 

These six one-dimensional test problems served to demonstrate the accuracy and power of the 
MP-PIC method. 
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A P P E N D I X  A 

Evaluation of Numerical Coefficients 
The following are the explicitly known coefficients of [36] and [42] of this paper: 

1 NpmpT'+t/2(2P) I + atDpJ Ai+ 1/2 - -  AX(pGg~)n+ 1/2 

B,+,/Z=~xx p ~ NpmpT,+l/2(Yp) I+AtD• J [A2] 

l [ mp 1 ] 
c,+ /2= ~x ~ Np-~ Ti+I/2(Yp) I +-AtD~ [A3] 

1 aw;  ] 
Oi+l/2 - Ax~i+,, ~p ~ NpmO T,+,/2(Yp) [A4] 

L P~ 1 + AtD;J 

E~+ ,,2 = ~ Np p--~ Ti+~/2(2%) 1 + XtD [A51 

Fi+l/2=l ~p [NpmpTi+l/2(.~p) opv;-~g-] 1 + AtD"p]" [A6] 


